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Modeling maps by using rational functions
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Rational functions are not very useful for obtaining global differential models because they involve poles
that may eject the trajectory to infinity. In contrast, it is here shown that they allow one to significantly improve
the quality of models for maps. In such a case, the presence of poles does not involve any numerical difficulty
when the models are iterated. The models then take advantage of the ability of rational functions to capture
complicated structures that may be generated by maps. The method is applied to experimental data from copper
electrodissolution.

PACS numbes): 05.45—a, 02.70-c, 82.20.Wt

[. INTRODUCTION chaotic dripping faucet, by using polynomials as basis func-
tions. Breeden and Huler [8] investigated the case when a
A good understanding of a physical process generated biyvo-dimensional (2D) time series is generated by two
a dynamical system, in particular from the real world with acoupled logistic maps. This is a very favorable situation be-
limited data set, requires a model. For the last decade, theduse the functions to be approximated are then indeed poly-
idea that models may be extracted from time series withoupomials, i.e., they possess the same structure as the basis
any prior knowledge of the underlying processes has beeftinctions with which they are approximated. A more difficult
developed and good models have been obtained by usirgfse is discussed by Giona, Lentini, and Cimadalli who
global modeling techniques applied to experimental dat£onsider the Ikeda mgd0], which constitutes a nonpolyno-
([1—3], among othens There, it is assumed that the recordedmial system, for which, however, they obtained a satisfactory
variables have been produced by a deterministic dynamicdlolynomial model from a 2D time series.
system in the presence of noise. The aim is then to extract a All the aforementioned map models are obtained by using
mathematical model reproducing the deterministic part of thd?0lynomial expansions, i.e., smooth basis functions. One
underlying dynamics. Furthermore, we focus on the cas&ay note, however, that such functions are not necessarily
when the system is low dimensional, here meaning that ifPpropriate to model a dynamics with apparent or real dis-
involves fewer than about ten variables. For a time-continuities, as observed on a four-branch first-return map
continuous behavior, the evolution of the system is describeffom the Rasler system or from the Lorenz map. This is
by a set of ordinary differential equations having the formlikely the reason why no difference equations have been pro-
x=F(x). In the case of a discrete-time behavior, the evolufosed to model these maps. In this paper, we therefore pro-
tion is specified by a difference equatio . ;=G(X,), pose to build map models by using rational functions that
wheren denotes time steps. Techniques devoted to the exarovide optimal fits for such maps. We shall also investigate
traction of a model from a time series generated by a set o first-return map for experimental data from copper electro-
ordinary differential equations are called flow modeling tech-dissolution. The models will be validated by investigating
niques, whereas map modeling designates the case wherfhgir associated populations of periodic orbits through a
time series is generated by difference equat(djm$)revious probablllty denSity function of visits that is very efficient for
papers, the terminology of global vector field reconstructionvalidating the discrete models.
has been used The paper is organized as follows. Section Il is devoted to
Although flow modelings have been extensively studied® mathematical background concerning the map modeling
[2—7], map modelings are scardgr,4,8. This fact is some- technique. In Sec. lll, which is the main part of the paper,
what surprising, in so far as, in many situations, time serie@pplications to numerical and experimental test cases are dis-
are actually generated by difference equations. Moreover, ifussed. Section IV is a conclusion.
the case of time-continuous systems such as the most studied
Rossler and Lorenz systems, t_he associated equations for re- II. MAP MODELING TECHNIQUE
turn maps are not knowa priori. In such a case, successful
map modelings can provide analytic information that cannot We consider maps reading as
be otherwise analytically derived from the original differen-
tial equations. The extraction of such analytical information _
: : : g Xn+1=G(Xp), 1)
may be an important issue when the system is low dissipa-
tive, because knowledge of the equations for the Poincare ) ) )
maps may allow one to determine the generating partition t§"here X, is the state vector at then¢-1)th iteration @
encode chaotic trajectorig8]. =0,1,...) andG defines the map under study. For an
Explicitly, Crutchfield and McNamarfl] obtained mod- m-dimensional state vector, the systéi involvesm func-
els for the Poincareap generated by an experimental modi-tions G; which are, in principle, assumed to Ee unknown.
fied Van der Pol oscillator and for two data sets from aThe aim is thereafter to obtain approximatio@s to the
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functionsG;, starting from a time series made of consecu- A-K=B (6)
tive values of one of the variables spanning the map.x,et
designate this variable. in which A is an N, X (N{+Ng—1) matrix andK is an

The problem of approximating functions starting from a(NE+ NE—l)-dimensionaI column vector, listing the un-
time series, with a basis of polynomials, has already beeRnown coefficients. AlsoB is an N,-dimensional column
considered in the case of flow modeliif2,4—-6. The ap- vector.
proximation is then obtained by using a least-squares method Equation(6) is solved by using a singular value decom-
to minimize a quadratic error function which compares ac-position of the A matrix [12], and the approximation is
tual values of the function and approximated values. Alsoachieved by minimizing a quadratic norm:
the functions are approximated by using multivariate mono-
mial expansions on nef§,11]. Similarly, in the case of map L,=V(AK-B)T(AK-B) (7)
modeling, the function$s; may be approximated by using
polynomials. The approximatioB; to G; then reads as

where () denotes the transposed matrix.
The quality of the model depends on the modeling param-
N eters, which aré\,, the number of state vectors taken into
Gi=>, K;; P! (2)  account to approximate the functionldy, the number of
=1 coefficients in the numerator; aid , the number of coef-
whereP! are monomials reading as, in the three—dimensionz-lECi.entS in the d_e_nominat_or. The_models_ Wi" be v_alidated b_y
case ' sing a probability density function of visits as dlscussed in
’ [13]. It must be noted that, although rational functions are no
Pi=xkylZm longer considered when a flow modeling is attempted, we
will exemplify that, in the case where discrete maps are un-
with a biunivocal relationship between integgrmnd triplets ~ der consideration, rational functions allow us to increase sig-
(k,l,m as defined in Ref[6] and N the number of mono- Nificantly the class of maps that can be modeled. In such
mials retained in the approximation. Unfortunately, mapsCases, there is no numerical problem during the iteration of
have very rarely been found to be well approximated by suchhe discrete models as encountered when flows are consid-
polynomial approximations. Instead, rational functions areeréd. Indeed, when a flow modeling is attempted with ratio-
required to capture stiff variations observed on maps such d&@l functions, the existence of singularities very often gener-
the Lorenz map or the four-branch &ater map investigated 2at€s regions of the phase portrait where the trajectory is

as of the attractor of measure zero, they usually cannot be nu-

merically avoided by the trajectory when a continuous model

ENE N.. Pl is searched. In contrast, when a discrete model is attempted,
B = j=1"1 &) it concerns a Poincaiection(or a first-return mapwhich is
: ENE D. pi ' generically chosen in a region of the attractor far from sin-
j=1-1]

gularities.

where N} is the number of monomials retained in the nu-
merator andNR, is the number of monomials retained in the
denominator. The coefficientd;; andD;; can then be deter- A. Numerical test cases
mined according to<i,n+1:(~3i(xn,yn,zn), which may be
rewritten as

IIl. APPLICATIONS

1. Ikeda map
In the simple cases where the maps are polynomial func-

Np NR tions, like the logistic map or the Hen map, the exact
X ne1l 2 Diij => Niij (4  functions G; are polynomials and, therefore, are easily
' j=1 =1 matched by polynomial expansions for the approximated

. . i . [ functionsG;. We are interested in investigating more com-
in whichx; is x, y, orzfori=1, 2, or 3, ancPy, is P! attime  pjicated cases where such a structure matching does not oc-
stepn. Equation(4) defines an approximation problem which ¢yr. our first example is the lkeda map readind G

can be solved by using\, vectors X,=(X,,Yn,Z,) With

N,=(N}+NR). Nevertheless, one of the denominator coef- Xt 1=1+0.7(X, COSTh— Y, SINT,),
ficients must be assigned a value to avoid a degeneracy prob- _
lem [5]. We arbitrarily setD;;=1. The number of retained Yn+1=0.7(X, sin7, +y, costy,), (8)
vectors for solving the problem must therefore now satisfy
the conditionN,=(N}+NR—1) and where
N Nk 04— )
- i Th=0.4— .
1_21 N;; PJn_Xi,n+l( 1_22 Di;P}, | =Xi n+1Di1- ) 1+xntyn

As suggested by Giona, Lentini, and CimagdHi], this
We have then to solve a system, constitutedNpyequations, model is particularly interesting since it presents a nonpoly-
taking the form nomial form although its behavior is quite simple as dis-
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played in Fig. 1a). It therefore constitutes a good test case totween Figs. £a) and Zb). If the number of terms in rational
exemplify the fact that nonpolynomial structures may be apfunctions is increased, no better model, i.e., with a smaller
proximated well enough by using polynomial basis func-error on the invariant density function, can be obtained.
tions. Moreover, increasing the statistics does not increase the
A rather good 2D model involving two functions has beenquality of the model and may even decrease its quality by
obtained with polynomial structures by using the modelingenlarging the numerical errors.
parameters N, ,Nx)=(25,21) for the first function and
(N, ,Ng)=(22,21) for the second function. Increasing the 2. Lorenz map
number of retained vectors, or the number of monomials A more acid test case is now investigated by considering
Ni does not help to obtain a better model. The model ishe Lorenz map computed from the Lorenz equationsRor
displayed in Fig. b). In order to check for the quality of the =280, ¢=10.0, and b=% [14]. Although the time-
model, the invariant probability density function of visits continuous Lorenz system is indeed generated by polynomial
[13]is used. It is computed from thevariable[Fig. 2a)]for  functions, there is no known explicit form for the associated
the original map. It may be favorably compared with the| orenz map. This map is displayed in FigaB A particular
probability computed for the polynomial discrete moff&l. difficulty arises from the fact that this map exhibits a critical
2(b)], although some amount of discrepancy can be visuallyoint, a cusp, where there is an actual derivative discontinu-
observed. ity. All trials with polynomial expansions failed, as expected,
The quality of the reconstruction may be quantitativelysince it is rather difficult to fit such a discontinuity with
estimated by using a mean relative error averaged on sma%$mooth polynomial functions.
bins of thex coordinate used to build the histograms dis- A map mode]ing is thereafter attempted by using rational
played in Figs. 2. This error is found to be equal to 2.3functions. Of course, instead of rational functions, we could
X102 and is drastically reduced to 10 by using more rather use piecewise polynomial functions. Nevertheless,
complex 2D models involving two rational functions. The such a piecewise model cannot be considered as a global
best model, i.e., the one for which the error is the smallestmodel for the map. A 1D discrete model has been obtained
involving two rational functions is obtained with jth modeling parameters\|, ,NY ,N2) equal to(51,22,23,
(N, ,Ni,NQ)=(42,23,18) for the first function and je. the model has the form of E). As an example, its
(N, ,NK,NR)=(50,20,29) for the second function. The in- coefficients are reported in Table I. The result of its integra-
variant measure is displayed in Fig(cR Indeed, the com- tion is displayed in Fig. ). Although very slight departures
parison between Figs(& and Zc) is much better than be- may be observed, the discontinuity associated with the criti-
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cal point is quite well reproduced. The quality of the modelare fixed t0(0.398,2.0,4.§) the system generates a chaotic
is checked by computing probability density functions of vis- attractor that is characterized by a unimodal map. There is no
its (Fig. 3. The peak located at the cusp for the original mapknown equation for this map. In this case, however, a model
is not clearly recovered for the discrete model. This meanss easily found by using a polynomial expansion with mod-
that the cusp is not fully captured by the model. Neverthe€ling parametersN, ,Nx) =(5,5), i.e., only five points have
less, the population of periodic orbits is only affected bybeen used for the approximation, corresponding to the lowest
such a discrepancy in terms of orbits whose period is greateheoretical limit for which a model with five coefficients may
than 6. No global model has been reported for this map bebe obtained. Such a feature is a signature of a very easy

fore. modeling. The model reads as
3. Reslermap Xt 1= K1+ KXo+ Kax2+ K oC+Kexd  (10)
Another well known system is the Bsler systeni15].
This system has three control parameter®,0. When they  with
TABLE |. Coefficients of the reconstructed map of the Lorenz

map. K,=—0.621249 046 487 11,
P X, power Np Dp K,=1.161 148 250 389 67,

1 0 0.089 388145015673 1.000 000 000 0000

2 1 —0.27125242511275 —8.591434992 7863 K= —0.749571054 812 79,

3 2 —1.157 0025728913 29.143 906 046 454

4 3 6.3388088099668 —45.778835787513

5 4 —8.503 036 536 959 1 22.902 918 693 639 Kq=—0.563853804 997 65,

6 5 —1.6205107331876 19.574 207 763519

7 6 8.0977153056864 —13.050493 866 068 Ks=—0.060982181 074 680.

8 7 4.8063714183192 —19.499 230076 356

9 8 ~7.411 649 0426822 3.2763177455441 A more interesting case arises for a,b,c)
10 9 —8.420288842 0510 16.071 238 494 349 = (0523,20,40) . The system then generates a chaotic at-
11 10 1.727 175 485 887 8 8.173 2554626608 tractor whose flrst—retyrn map |s.const|tut.ed py four mono-
12 11 08489680712166 —75754566263887  tonic branche$16]. This map |s.c.j|splay¢d in F'|g..(a). One
13 12 5.5732850510037 —13.203796710811  'May observe that there is a critical poifihte minimal ong
14 13 arassucarasos —3asesszerasay ot B T L aneion. Nev
15 14 —10.346295209 344 8.7.290 166 313545 ertheless, a satisfactory 2D modgl oyf the form P .
16 15 —2.582402129452 1 10.572 341 426 795 '
17 16 8.074 2331640294 0.192 321 354 963 08
18 17 8.747881 0616940 —10.628 324 838 265 Xn+1=G(Xn,Yn),
19 18 —4.6128217231011 —7.199847517 4029
20 19  —11.526534433515 7.374346 713566 1 Y+ 1=Xn (1)
21 20 10.301 636 497 816 10.878 248 212 930
22 21 —2.4098141903439 —12.350247547655 IS obtained with modeling parameters f@ given by
23 22 3.3745492813511 (N, ,NR ,NE) =(34,9,11). The model is constituted by a

single rational function in which two delay coordinates
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FIG. 4. Original map and discrete model for
the chaotic attractor generated by thesBler sys-
tem (a=0.523,b=2.0,c=4.0). Probability den-
sity function of visits is also reported.

(Xn,X,_1) are involved. An iteration of this model generates 5(a). A first-return map from a Poincamgection to itself is

the map displayed in Fig.(8).

found to be constituted by two monotonic branches clearly
enough separated by a critical point¥at=0.32[Fig. 5b)].

The Poincare section is defined asP={(Y,Z)eR?X
=43.7Y>0!.

In this section we are interested in modeling the underly- Qne may remark that the first-return map displayed in Fig.
ing dynamics governing an experimental data set describeg|p) exhibits a significant thickness that cannot be captured
in terms of discrete maps. In order to do so, we use a data sg{; a 1D discrete model. Indeed, a successful model has only

extracted from the experimental time series by computing &een obtained with a 2D model with rational functions read-
first-return map to a Poincasection from the time evolution  jng as

of the current passing through an electrode of a copper elec-
trodissolution experiment. This example is discussed to pro-

B. Experimental data

vide evidence of the ability of the method to capture experi- Xn+1=M,
mental dynamics. Fo(Xn,Yn)
Periodic and chaotic oscillations have been observed in a
number of electrochemically reacting systefg]. Copper Vs =X (12)

electrodissolution in EPO, has been found to undergo Hopf
bifurcation to oscillatory behavior followed by a period-

doubling bifurcation cascade to simple ch&t8]. The time  model generating a map close to the experimental first-return
series is obtained by recording the dissolution curl¢tf  map. Depending on the number of points used for the esti-
during potentiostatic electrodissolution of a rotating Cu elecation, the thickness of the first-return map generated by the
trode in phosphoric acid. The experimental setup is describeghodel is more or less large. Such a dependence of the thick-
in [3]. Only the asymptotic behavior is studied. The embedness of the first-return map has not been observed when flow
ding dimension has been estimated to be equal to 3. Thgodeling using derivative coordinates was considered. This

A few modeling parameters may allow one to find a

phase portrait may therefore be exhibited in a measuremegbuld result from the large flexibility of rational functions,

phase space spanned by derivative coordinéXesl (t),Y

which can therefore capture some dynamical properties re-

=1(t),Z=I(t)) with a plane projection displayed in Fig. sulting from the interaction of noise with the dynamics. In-
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FIG. 5. Plane projection of the phase portrait
reconstructed from the experimental data and a
first-return map to the PoincasectionP.
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deed, the action of noise may be compared, in a certain The model may afterward be iterated to generate the
sense, to a reduction of the dissipation rate of a dynamicahodel dynamical behaviofFig. 6). One may observe that
system. A larger structure, most often blurred, may then apthe model essentially captures the main features of the dy-
pear. While a rather thick model is obtained with the mod-namics of the experimental map. Of course, the thickness of
eling parametersN, ,NE ,NE):(22,5,14), a thinner map is the discrete model is less significant than for the experimen-
obtained when the number of points retained for the estimal@l data since a noise filtering process resulting from the sta-
tion is increased, i.e.N, ,N¥,N2)=(60,5,5). Moreover, it listics is involved. . . N
may be remarked that the model computed on a larger set of The model cannot be validated by using the probability
points is constituted by a simpler rational function since thed€nsity function of visits because they are spoiled too much
number of coefficients on the denominatef has been re- DY noise contaminatiotbut see Fig. J. Nevertheless, sym-
duced from 14 to 5. bolic planes(as defined if3]) may be conveniently used as

Using more points for the fit averages the influence Ofdisplayed jn Fig. 7. T.hey.are found to be very.sim.ilar al-
noise and allows one to obtain a better model from a dynamit’0ugh noise comtamination reveals itself by diffusing the

cal point of view, and also better with respect to its Complex_structures.of the expgrlm'ent'al Sym.bO“C plane. AS a conse-
uence, since the noise is filtered in the modeling process,

ity, since nine terms have been deleted. Increasing the nurr‘?rl1 del bolic bl S| f L ion h
ber of retained points again does not improve the quality of '€ Model symboalic plane is less fuzzy. Let us mention, how-

this second model and even decreases it. Such a feature maye" ;hat the_ visual depariures between symbolic planes are
result from two facts. First, when too many points are re-2 sociated with a very small number of events. This is con-

tained for estimating a model, the noise may be accumulateg'ymed by the populations of periodic orbits, which are the

sufficiently to decrease the quality of the model. SecondS@Me UP to period 7 for the experimental and model data.
when the length of the time series is increased, it may hapen
that the trajectory visits for a long time the neighborhood of

a periodic orbit which becomes preponderant in the statistics
and, consequently, a model generating a limit cycle corre- Several models have been obtained for different kinds of

IV. CONCLUSION

sponding to the most visited periodic orbit is obtained. nontrivial maps. We observed that modeling of discrete maps
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may be improved by using rational functions. These funcflows, they become very efficient for modeling discrete
tions enlarge the class of maps that may be successfullynaps.

modeled. Such a result is particularly interesting since previ-

ous investigations have revealed that rational functions can-

not be used for flow modeling without generating numerical ACKNOWLEDGMENTS

difficulties when integrating the differential models. For map

modeling, such difficulties are not encountered and, in par- We wish to thank Professor J. Hudson and Professor Z.
ticular, a successful map has been obtained to modelize tHeei for their beautiful data generated for copper electrodis-
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