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Modeling maps by using rational functions

O. Ménard, C. Letellier, J. Maquet, and G. Gouesbet
CORIA UMR 6614, Universite´ et INSA de Rouen, Place Emile Blondel, 76821 Mont Saint-Aignan Cedex, France

~Received 24 September 1999; revised manuscript received 23 May 2000!

Rational functions are not very useful for obtaining global differential models because they involve poles
that may eject the trajectory to infinity. In contrast, it is here shown that they allow one to significantly improve
the quality of models for maps. In such a case, the presence of poles does not involve any numerical difficulty
when the models are iterated. The models then take advantage of the ability of rational functions to capture
complicated structures that may be generated by maps. The method is applied to experimental data from copper
electrodissolution.

PACS number~s!: 05.45.2a, 02.70.2c, 82.20.Wt
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I. INTRODUCTION

A good understanding of a physical process generated
a dynamical system, in particular from the real world with
limited data set, requires a model. For the last decade,
idea that models may be extracted from time series with
any prior knowledge of the underlying processes has b
developed and good models have been obtained by u
global modeling techniques applied to experimental d
~@1–3#, among others!. There, it is assumed that the record
variables have been produced by a deterministic dynam
system in the presence of noise. The aim is then to extra
mathematical model reproducing the deterministic part of
underlying dynamics. Furthermore, we focus on the c
when the system is low dimensional, here meaning tha
involves fewer than about ten variables. For a tim
continuous behavior, the evolution of the system is descri
by a set of ordinary differential equations having the fo
ẋ5F(x). In the case of a discrete-time behavior, the evo
tion is specified by a difference equationxn115G(xn),
wheren denotes time steps. Techniques devoted to the
traction of a model from a time series generated by a se
ordinary differential equations are called flow modeling tec
niques, whereas map modeling designates the case wh
time series is generated by difference equations~in previous
papers, the terminology of global vector field reconstruct
has been used!.

Although flow modelings have been extensively stud
@2–7#, map modelings are scarcer@1,4,8#. This fact is some-
what surprising, in so far as, in many situations, time se
are actually generated by difference equations. Moreove
the case of time-continuous systems such as the most stu
Rössler and Lorenz systems, the associated equations fo
turn maps are not knowna priori. In such a case, successf
map modelings can provide analytic information that can
be otherwise analytically derived from the original differe
tial equations. The extraction of such analytical informati
may be an important issue when the system is low diss
tive, because knowledge of the equations for the Poinc´
maps may allow one to determine the generating partition
encode chaotic trajectories@9#.

Explicitly, Crutchfield and McNamara@1# obtained mod-
els for the Poincare´ map generated by an experimental mo
fied Van der Pol oscillator and for two data sets from
PRE 621063-651X/2000/62~5!/6325~7!/$15.00
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chaotic dripping faucet, by using polynomials as basis fu
tions. Breeden and Hu¨bler @8# investigated the case when
two-dimensional ~2D! time series is generated by tw
coupled logistic maps. This is a very favorable situation b
cause the functions to be approximated are then indeed p
nomials, i.e., they possess the same structure as the
functions with which they are approximated. A more difficu
case is discussed by Giona, Lentini, and Cimagalli@4#, who
consider the Ikeda map@10#, which constitutes a nonpolyno
mial system, for which, however, they obtained a satisfact
polynomial model from a 2D time series.

All the aforementioned map models are obtained by us
polynomial expansions, i.e., smooth basis functions. O
may note, however, that such functions are not necess
appropriate to model a dynamics with apparent or real d
continuities, as observed on a four-branch first-return m
from the Rössler system or from the Lorenz map. This
likely the reason why no difference equations have been p
posed to model these maps. In this paper, we therefore
pose to build map models by using rational functions t
provide optimal fits for such maps. We shall also investig
a first-return map for experimental data from copper elec
dissolution. The models will be validated by investigatin
their associated populations of periodic orbits through
probability density function of visits that is very efficient fo
validating the discrete models.

The paper is organized as follows. Section II is devoted
a mathematical background concerning the map mode
technique. In Sec. III, which is the main part of the pap
applications to numerical and experimental test cases are
cussed. Section IV is a conclusion.

II. MAP MODELING TECHNIQUE

We consider maps reading as

Xn115G~Xn!, ~1!

whereXn11 is the state vector at the (n11)th iteration (n
50,1, . . . ) andG defines the map under study. For a
m-dimensional state vector, the system~1! involvesm func-
tions Gi which are, in principle, assumed to be unknow
The aim is thereafter to obtain approximationsG̃i to the
6325 ©2000 The American Physical Society
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functionsGi , starting from a time series made of consec
tive values of one of the variables spanning the map. Lexn
designate this variable.

The problem of approximating functions starting from
time series, with a basis of polynomials, has already b
considered in the case of flow modeling@1,2,4–6#. The ap-
proximation is then obtained by using a least-squares me
to minimize a quadratic error function which compares
tual values of the function and approximated values. Al
the functions are approximated by using multivariate mo
mial expansions on nets@6,11#. Similarly, in the case of map
modeling, the functionsGi may be approximated by usin
polynomials. The approximationG̃i to Gi then reads as

G̃i5(
j 51

NK

Ki j P
j ~2!

wherePj are monomials reading as, in the three-dimensio
case,

Pj5xkylzm

with a biunivocal relationship between integersj and triplets
~k,l,m! as defined in Ref.@6# and NK the number of mono-
mials retained in the approximation. Unfortunately, ma
have very rarely been found to be well approximated by s
polynomial approximations. Instead, rational functions
required to capture stiff variations observed on maps suc
the Lorenz map or the four-branch Ro¨ssler map investigated
in the next section. The functionsGi are then approximated
as

G̃i5
(

j 51
NK

N

Ni j P
j

(
j 51
NK

D

Di j P
j
, ~3!

whereNK
N is the number of monomials retained in the n

merator andNK
D is the number of monomials retained in th

denominator. The coefficientsNi j andDi j can then be deter
mined according toxi ,n115G̃i(xn ,yn ,zn), which may be
rewritten as

xi ,n11S (
j 51

NK
D

Di j Pn
j D 5(

j 51

NK
N

Ni j Pn
j ~4!

in which xi is x, y, or z for i 51, 2, or 3, andPn
j is Pj at time

stepn. Equation~4! defines an approximation problem whic
can be solved by usingNv vectors Xn5(xn ,yn ,zn) with
Nv>(NK

N1NK
D). Nevertheless, one of the denominator co

ficients must be assigned a value to avoid a degeneracy p
lem @5#. We arbitrarily setDi151. The number of retained
vectors for solving the problem must therefore now sati
the conditionNv>(NK

N1NK
D21) and

(
j 51

NK
N

Ni j Pn
j 2xi ,n11S (

j 52

NK
D

Di j Pn
j D 5xi ,n11Di1 . ~5!

We have then to solve a system, constituted byNv equations,
taking the form
-

n

od
-
,
-
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s
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A•K5B ~6!

in which A is an Nv3(NK
N1NK

D21) matrix andK is an
(NK

N1NK
D21)-dimensional column vector, listing the un

known coefficients. Also,B is an Nv-dimensional column
vector.

Equation~6! is solved by using a singular value decom
position of the A matrix @12#, and the approximation is
achieved by minimizing a quadratic norm:

L25A~AK2B!†~AK2B! ~7!

where (•)† denotes the transposed matrix.
The quality of the model depends on the modeling para

eters, which areNv , the number of state vectors taken in
account to approximate the functions;NK

N , the number of
coefficients in the numerator; andNK

D , the number of coef-
ficients in the denominator. The models will be validated
using a probability density function of visits as discussed
@13#. It must be noted that, although rational functions are
longer considered when a flow modeling is attempted,
will exemplify that, in the case where discrete maps are
der consideration, rational functions allow us to increase s
nificantly the class of maps that can be modeled. In s
cases, there is no numerical problem during the iteration
the discrete models as encountered when flows are con
ered. Indeed, when a flow modeling is attempted with ra
nal functions, the existence of singularities very often gen
ates regions of the phase portrait where the trajectory
ejected to infinity. Although such regions represent a sub
of the attractor of measure zero, they usually cannot be
merically avoided by the trajectory when a continuous mo
is searched. In contrast, when a discrete model is attemp
it concerns a Poincare´ section~or a first-return map! which is
generically chosen in a region of the attractor far from s
gularities.

III. APPLICATIONS

A. Numerical test cases

1. Ikeda map

In the simple cases where the maps are polynomial fu
tions, like the logistic map or the He´non map, the exac
functions Gi are polynomials and, therefore, are eas
matched by polynomial expansions for the approxima
functionsG̃i . We are interested in investigating more com
plicated cases where such a structure matching does no
cur. Our first example is the Ikeda map reading as@10#

xn115110.7~xn costn2yn sintn!,

yn1150.7~xn sintn1yn costn!, ~8!

where

tn50.42
6.0

11xn
21yn

2 . ~9!

As suggested by Giona, Lentini, and Cimagalli@4#, this
model is particularly interesting since it presents a nonpo
nomial form although its behavior is quite simple as d
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FIG. 1. The Ikeda map and its model obtaine
by using polynomial functions. Coordinates a
normalized between 0 and 1.
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played in Fig. 1~a!. It therefore constitutes a good test case
exemplify the fact that nonpolynomial structures may be
proximated well enough by using polynomial basis fun
tions.

A rather good 2D model involving two functions has be
obtained with polynomial structures by using the model
parameters (Nv ,NK)5(25,21) for the first function and
(Nv ,NK)5(22,21) for the second function. Increasing t
number of retained vectorsNv or the number of monomials
NK does not help to obtain a better model. The mode
displayed in Fig. 1~b!. In order to check for the quality of the
model, the invariant probability density function of visi
@13# is used. It is computed from thex variable@Fig. 2~a!# for
the original map. It may be favorably compared with t
probability computed for the polynomial discrete model@Fig.
2~b!#, although some amount of discrepancy can be visu
observed.

The quality of the reconstruction may be quantitative
estimated by using a mean relative error averaged on s
bins of thex coordinate used to build the histograms d
played in Figs. 2. This error is found to be equal to 2
31023 and is drastically reduced to 1025 by using more
complex 2D models involving two rational functions. Th
best model, i.e., the one for which the error is the small
involving two rational functions is obtained wit
(Nv ,NK

N ,NK
D)5(42,23,18) for the first function and

(Nv ,NK
N ,NK

D)5(50,20,29) for the second function. The in
variant measure is displayed in Fig. 2~c!. Indeed, the com-
parison between Figs. 2~a! and 2~c! is much better than be
o
-

-

s

ly

all
-

t,

tween Figs. 2~a! and 2~b!. If the number of terms in rationa
functions is increased, no better model, i.e., with a sma
error on the invariant density function, can be obtain
Moreover, increasing the statistics does not increase
quality of the model and may even decrease its quality
enlarging the numerical errors.

2. Lorenz map

A more acid test case is now investigated by consider
the Lorenz map computed from the Lorenz equations foR
528.0, s510.0, and b5 8

3 @14#. Although the time-
continuous Lorenz system is indeed generated by polynom
functions, there is no known explicit form for the associat
Lorenz map. This map is displayed in Fig. 3~a!. A particular
difficulty arises from the fact that this map exhibits a critic
point, a cusp, where there is an actual derivative discont
ity. All trials with polynomial expansions failed, as expecte
since it is rather difficult to fit such a discontinuity wit
~smooth! polynomial functions.

A map modeling is thereafter attempted by using ratio
functions. Of course, instead of rational functions, we co
rather use piecewise polynomial functions. Neverthele
such a piecewise model cannot be considered as a gl
model for the map. A 1D discrete model has been obtai
with modeling parameters (Nv ,NK

N ,NK
D) equal to~51,22,23!,

i.e., the model has the form of Eq.~3!. As an example, its
coefficients are reported in Table I. The result of its integ
tion is displayed in Fig. 3~b!. Although very slight departures
may be observed, the discontinuity associated with the c
a

FIG. 2. Probability density functions of visits

of the x coordinate for the original Ikeda map,
polynomial, and a rational model.
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FIG. 3. Original map and model for the cha
otic attractor generated by the Lorenz system~R
528.0,s510.0,b58/3!. Probability density
functions of visits are also displayed.
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cal point is quite well reproduced. The quality of the mod
is checked by computing probability density functions of v
its ~Fig. 3!. The peak located at the cusp for the original m
is not clearly recovered for the discrete model. This me
that the cusp is not fully captured by the model. Nevert
less, the population of periodic orbits is only affected
such a discrepancy in terms of orbits whose period is gre
than 6. No global model has been reported for this map
fore.

3. Rössler map

Another well known system is the Ro¨ssler system@15#.
This system has three control parameters~a,b,c!. When they

TABLE I. Coefficients of the reconstructed map of the Lore
map.

p xn power Np Dp

1 0 0.089 388 145 015 673 1.000 000 000 000
2 1 20.271 252 425 112 75 28.591 434 992 786 3
3 2 21.157 002 572 891 3 29.143 906 046 454
4 3 6.338 808 809 966 8 245.778 835 787 513
5 4 28.503 036 536 959 1 22.902 918 693 639
6 5 21.620 510 733 187 6 19.574 207 763 519
7 6 8.097 715 305 686 4 213.050 493 866 068
8 7 4.806 371 418 319 2 219.499 230 076 356
9 8 27.411 649 042 682 2 3.276 317 745 544 1

10 9 28.420 288 842 051 0 16.071 238 494 349
11 10 1.727 175 485 887 8 8.173 255 462 660
12 11 9.848 968 071 216 6 27.575 456 626 388 7
13 12 5.573 285 051 003 7 213.203 796 710 811
14 13 24.743 844 627 850 9 233.849 832 873 339
15 14 210.346 295 209 344 8.7.290 166 313 54
16 15 22.582 402 129 452 1 10.572 341 426 795
17 16 8.074 233 164 029 4 0.192 321 354 963
18 17 8.747 881 061 694 0 210.628 324 838 265
19 18 24.612 821 723 101 1 27.199 847 517 402 9
20 19 211.526 534 433 515 7.374 346 713 566 1
21 20 10.301 636 497 816 10.878 248 212 930
22 21 22.409 814 1903 439 212. 350 247 547 655
23 22 3.374 549 281 351 1
l
-
p
s
-

er
e-

are fixed to~0.398,2.0,4.0!, the system generates a chao
attractor that is characterized by a unimodal map. There is
known equation for this map. In this case, however, a mo
is easily found by using a polynomial expansion with mo
eling parameters (Nv ,NK)5(5,5), i.e., only five points have
been used for the approximation, corresponding to the low
theoretical limit for which a model with five coefficients ma
be obtained. Such a feature is a signature of a very e
modeling. The model reads as

xn115K11K2xn1K3xn
21K4xn

31K5xn
4 ~10!

with

K1520.621 249 046 487 11,

K251.161 148 250 389 67,

K3520.749 571 054 812 79,

K4520.563 853 804 997 65,

K5520.060 982 181 074 680.

A more interesting case arises for (a,b,c)
5(0.523,2.0,4.0). The system then generates a chaotic
tractor whose first-return map is constituted by four mon
tonic branches@16#. This map is displayed in Fig. 4~a!. One
may observe that there is a critical point~the minimal one!
which is stiff. This may be the reason why no success
model has been obtained with a polynomial expansion. N
ertheless, a satisfactory 2D model of the form

xn115G~xn ,yn!,

yn115xn ~11!

is obtained with modeling parameters forG given by
(Nv ,NK

N ,NK
D)5(34,9,11). The model is constituted by

single rational function in which two delay coordinate
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FIG. 4. Original map and discrete model fo
the chaotic attractor generated by the Ro¨ssler sys-
tem ~a50.523,b52.0, c54.0!. Probability den-
sity function of visits is also reported.
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(xn ,xn21) are involved. An iteration of this model generat
the map displayed in Fig. 4~b!.

B. Experimental data

In this section we are interested in modeling the unde
ing dynamics governing an experimental data set descr
in terms of discrete maps. In order to do so, we use a data
extracted from the experimental time series by computin
first-return map to a Poincare´ section from the time evolution
of the current passing through an electrode of a copper e
trodissolution experiment. This example is discussed to p
vide evidence of the ability of the method to capture expe
mental dynamics.

Periodic and chaotic oscillations have been observed
number of electrochemically reacting systems@17#. Copper
electrodissolution in H3PO4 has been found to undergo Hop
bifurcation to oscillatory behavior followed by a period
doubling bifurcation cascade to simple chaos@18#. The time
series is obtained by recording the dissolution currentI (t)
during potentiostatic electrodissolution of a rotating Cu el
trode in phosphoric acid. The experimental setup is descr
in @3#. Only the asymptotic behavior is studied. The emb
ding dimension has been estimated to be equal to 3.
phase portrait may therefore be exhibited in a measurem
phase space spanned by derivative coordinates„X5I (t),Y
5 İ (t),Z5 Ï (t)… with a plane projection displayed in Fig
-
ed
et
a

c-
o-
i-

a

-
ed
-

he
nt

5~a!. A first-return map from a Poincare´ section to itself is
found to be constituted by two monotonic branches clea
enough separated by a critical point atYc50.32 @Fig. 5~b!#.
The Poincare´ section is defined asP[$(Y,Z)PR2uX
543.7,Y.0%.

One may remark that the first-return map displayed in F
5~b! exhibits a significant thickness that cannot be captu
by a 1D discrete model. Indeed, a successful model has
been obtained with a 2D model with rational functions rea
ing as

xn115
FN~xn ,yn!

FD~xn ,yn!
,

yn115xn . ~12!

A few modeling parameters may allow one to find
model generating a map close to the experimental first-re
map. Depending on the number of points used for the e
mation, the thickness of the first-return map generated by
model is more or less large. Such a dependence of the th
ness of the first-return map has not been observed when
modeling using derivative coordinates was considered. T
could result from the large flexibility of rational functions
which can therefore capture some dynamical properties
sulting from the interaction of noise with the dynamics. I
it
a

FIG. 5. Plane projection of the phase portra
reconstructed from the experimental data and
first-return map to the Poincare´ sectionP.



n.
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FIG. 6. Models for the first-return map from
the data generated by copper electrodissolutio
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deed, the action of noise may be compared, in a cer
sense, to a reduction of the dissipation rate of a dynam
system. A larger structure, most often blurred, may then
pear. While a rather thick model is obtained with the mo
eling parameters (Nv ,NK

N ,NK
D)5(22,5,14), a thinner map is

obtained when the number of points retained for the esti
tion is increased, i.e., (Nv ,NK

N ,NK
D)5(60,5,5). Moreover, it

may be remarked that the model computed on a larger se
points is constituted by a simpler rational function since
number of coefficients on the denominatorNK

D has been re-
duced from 14 to 5.

Using more points for the fit averages the influence
noise and allows one to obtain a better model from a dyna
cal point of view, and also better with respect to its comple
ity, since nine terms have been deleted. Increasing the n
ber of retained points again does not improve the quality
this second model and even decreases it. Such a feature
result from two facts. First, when too many points are
tained for estimating a model, the noise may be accumula
sufficiently to decrease the quality of the model. Seco
when the length of the time series is increased, it may ha
that the trajectory visits for a long time the neighborhood
a periodic orbit which becomes preponderant in the statis
and, consequently, a model generating a limit cycle co
sponding to the most visited periodic orbit is obtained.
in
al
p-
-
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of
e

f
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-
m-
f
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-
ed
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The model may afterward be iterated to generate
model dynamical behavior~Fig. 6!. One may observe tha
the model essentially captures the main features of the
namics of the experimental map. Of course, the thicknes
the discrete model is less significant than for the experim
tal data since a noise filtering process resulting from the
tistics is involved.

The model cannot be validated by using the probabi
density function of visits because they are spoiled too m
by noise contamination~but see Fig. 7!. Nevertheless, sym
bolic planes~as defined in@3#! may be conveniently used a
displayed in Fig. 7. They are found to be very similar a
though noise comtamination reveals itself by diffusing t
structures of the experimental symbolic plane. As a con
quence, since the noise is filtered in the modeling proc
the model symbolic plane is less fuzzy. Let us mention, ho
ever, that the visual departures between symbolic planes
associated with a very small number of events. This is c
firmed by the populations of periodic orbits, which are t
same up to period 7 for the experimental and model data

IV. CONCLUSION

Several models have been obtained for different kinds
nontrivial maps. We observed that modeling of discrete m
e
p-
FIG. 7. Probability density functions of visits
of thexn coordinates and symbolic planes for th
experimental map and the discrete model for co
per electrodissolution.
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may be improved by using rational functions. These fu
tions enlarge the class of maps that may be success
modeled. Such a result is particularly interesting since pre
ous investigations have revealed that rational functions c
not be used for flow modeling without generating numeri
difficulties when integrating the differential models. For m
modeling, such difficulties are not encountered and, in p
ticular, a successful map has been obtained to modelize
first-return map generated by copper electrodissolution. C
sequently, if rational functions are not recommended
L

s

-
lly
i-
n-
l

r-
he
n-
r

flows, they become very efficient for modeling discre
maps.
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